Journal of
Approximation
Theory

Fine structure of the zeros of orthogonal polynomials, II. OPUC with competing exponential decay

Barry Simon ${ }^{1}$
Department of Mathematics 253-37, California Institute of Technology, Pasadena, CA 91125, USA
Received 19 November 2004; received in revised form 6 March 2005; accepted 13 April 2005

Communicated by Leonid Golinskii

Abstract

We present a complete theory of the asymptotics of the zeros of OPUC with Verblunsky coefficients $\alpha_{n}=\sum_{\ell=1}^{L} C_{\ell} b_{\ell}^{n}+O\left((b \Delta)^{n}\right)$ where $\Delta<1$ and $\left|b_{\ell}\right|=b<1$. © 2005 Elsevier Inc. All rights reserved. Keywords: Zeros; OPUC

1. Introduction

This paper is the second in a series $[7,8]$ that discusses detailed asymptotics of the zeros of orthogonal polynomials with special emphasis on distances between nearby zeros. We will focus here on OPUC, orthogonal polynomials on the unit circle; see $[9,2,5,6]$ for background. The polynomials are described by the recursion coefficients, $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$, called Verblunsky coefficients, that give the monic OPUC, $\Phi_{n}(z)$, by

$$
\begin{equation*}
\Phi_{n+1}(z)=z \Phi_{n}(z)-\bar{\alpha}_{n} \Phi_{n}^{*}(z) \tag{1.1}
\end{equation*}
$$

[^0]

Fig. 1. Zeros when $\alpha_{n}=\left(\frac{1}{2}\right)^{n+1}$ for $N=22$.
where

$$
\begin{equation*}
\Phi_{n}^{*}(z)=z^{n} \overline{\Phi_{n}(1 / \bar{z})} \tag{1.2}
\end{equation*}
$$

One of the examples discussed in the first paper [7] is where $0<b<1$ and

$$
\begin{equation*}
\alpha_{n}=C b^{n}+O\left((b \Delta)^{n}\right) \tag{1.3}
\end{equation*}
$$

for $0<\Delta<1$. A typical example is shown in Fig. 1 where

$$
\begin{equation*}
\alpha_{n}=\left(\frac{1}{2}\right)^{n+1} \tag{1.4}
\end{equation*}
$$

and zeros of Φ_{22} are shown. Figures and numeric zeros, which appear in [5,7] and here, are computed using Mathematica and code written by M. Stoiciu.

Critical aspects of the zeros in this case are:
(a) Finitely many zeros outside $|z|=b+O(\log n / n)$ at the Nevai-Totik points, that is, solutions of $D(1 / \bar{z})^{-1}=0$ where D is the Szegó function; this is due to Nevai-Totik [4].
(b) No zeros in $|z|<b-O(\log n / n)$. This is due to Barrios-López-Saff [1].
(c) Zeros near $|z|=b$ are asymptotically a distance $2 \pi b / n+o(1 / n)$ from each other except for a single gap at $z=b$, where the nearby zeros are $b e^{ \pm 2 \pi i / n}+O\left(1 / n^{2}\right)$, and the distance between these neighboring zeros is $2(2 \pi b / n)+O\left(1 / n^{2}\right)$. This is proven in [7].

Fig. 2. Zeros when $\alpha_{n}=\left(\frac{1}{2}\right)^{n+1}\left(1+2 \cos \left(\frac{\pi}{2}(n+1)\right)\right)$ for $N=22$.
In this paper, I will analyze the case of Verblunsky coefficients of the form

$$
\begin{equation*}
\alpha_{n}=\sum_{\ell=1}^{L} C_{\ell} b_{\ell}^{n}+O\left((b \Delta)^{n}\right) \tag{1.5}
\end{equation*}
$$

where the b_{ℓ} 's are distinct, $C_{\ell} \neq 0$ for all ℓ, and

$$
\begin{equation*}
\left|b_{\ell}\right|=b \quad \ell=1, \ldots, L \tag{1.6}
\end{equation*}
$$

If the b_{ℓ} 's obey $b_{\ell}^{p}=b^{p}$ for some p, then $\alpha_{n+1} / \alpha_{n}$ is periodic of period p, and this overlaps examples of BLS [1] discussed later.

A typical example is shown in Fig. 2 where

$$
\begin{equation*}
\alpha_{n}=\left(\frac{1}{2}\right)^{n+1}\left(1+2 \cos \left(\frac{\pi}{2}(n+1)\right)\right) \tag{1.7}
\end{equation*}
$$

and again, zeros of Φ_{22} are shown. This has $b_{1}=1 / 2, b_{2}=i / 2, b_{3}=-i / 2$.
Here is what happens to (a)-(c) above:
(a^{\prime}) The Nevai-Totik theory still applies. There are three NT zeros in the example in Fig. 2.
(b') There are at most $L-1$ zeros in $|z|<b-O(\log n / n)$ and they can be described explicitly. In the case of periodic $\alpha_{n+1} / \alpha_{n}$, the interior zeros for Φ_{n} with $n=m p+q$ and $m \rightarrow \infty$ have explicitly computable limits (limits, not merely accumulation points). For the example in Fig. 2, $\Phi_{n}, n \equiv 2(\bmod 4)$, have a zero approaching $\frac{1}{2}(\sqrt{2}-1)=$ $0.20710678118 \ldots$. The actual zero in Fig. 2 is at $0.20710678374 \ldots$.
(c') There are gaps at each \bar{b}_{ℓ}.

The method used in [7] to prove (a)-(c) exploits a second-order difference equation that Φ_{n} obeys, relating Φ_{n+1} to Φ_{n} and Φ_{n-1}. That method may extend to the periodic case, $b_{\ell}^{p}=b$, but will have small divisor problems if α_{n} / b^{n} is only almost periodic. Instead, this paper will use a different and potentially more powerful and illuminating method that views (1.1) with $\Phi_{n}^{*}(z)$ fixed as an inhomogeneous first-order difference equation for $\Phi_{n}(z)$.

In Section 2, we discuss asymptotics of Φ_{n} for $|z|<b$. In Section 3, we discuss asymptotics of Φ_{n} in the critical region $b \Delta_{1}<|z|<b \Delta_{1}^{-1}$. In Section 4, we study zeros in $|z|<b$, and in Section 5, the zeros near $|z|=b$. Given Section 2, Section 4 is straightforward. Section 5 will use the ideas in [7]. Finally, Section 6 makes various remarks about the connection to [1].

Figs. 1 and 2 suggest that there might be a connection between the gaps in the clock and the Nevai-Totik zeros since in these two cases the number of NT zeros equals the number of gaps, and the zeros are near the gaps. There is certainly something to this notion. If a coefficient C_{ℓ} in (1.5) is changed from zero to nonzero, for large n, the zero that was in the gap at zero value of C_{ℓ} must stop being on the critical circle, and so presumably turns into an NT zero (this is an expectation, not a proof, since a proof involves controlling an interchange of limits). But the connection is not always there. Fig. 8.3 in [5] shows an example where there is a gap but no associated NT zero. Moreover, the discussion in Section 13 of [7] makes it clear that the number of NT zeros can be arbitrary and is not, in general, the same as the number of gaps in the clock.

2. Asymptotics in $|z|<b-\varepsilon$

Our main goal here is to give asymptotics of $\varphi_{n}(z)$ in the region $|z|<b$ in case (1.5) holds. Our methods will also allow us to say something when weaker asymptotics (ratio asymptotics) holds and, in particular, to improve a result of BLS [1].

We begin with an analysis of some bounds and rate of convergence of Φ_{n}^{*}. Estimates similar to these appear in $[4,3,1,7]$. We use q rather than b since sometimes $q=b+\varepsilon$.

Proposition 2.1. Suppose that

$$
\begin{equation*}
\left|\alpha_{n}\right| \leqslant C q^{n} \tag{2.1}
\end{equation*}
$$

for some $q \in(0,1)$. Then
(i) With $C_{1}=\prod_{j=0}^{\infty}\left(1+C q^{j}\right)<\infty$, we have

$$
\begin{align*}
& |z| \leqslant 1 \Rightarrow\left|\Phi_{n}^{*}(z)\right| \leqslant C_{1}, \tag{2.2}\\
& |z| \geqslant 1 \Rightarrow\left|\Phi_{n}(z)\right| \leqslant C_{1}|z|^{n} . \tag{2.3}
\end{align*}
$$

(ii) For $1 \leqslant|z|<q^{-1}$,

$$
\begin{equation*}
\left|\Phi_{n}^{*}(z)\right| \leqslant 1+C_{1} C|z|(1-q|z|)^{-1} \tag{2.4}
\end{equation*}
$$

(iii) For any $q^{\prime}>q$, there is $C_{q^{\prime}}$ with

$$
\begin{equation*}
\left|\Phi_{n}(z)\right| \leqslant C_{q^{\prime}}\left(\max \left(|z|, q^{\prime}\right)\right)^{n} \tag{2.5}
\end{equation*}
$$

for $|z|<1$.
(iv) For $|z| \leqslant q^{\prime}$,

$$
\begin{equation*}
\left|\Phi_{n}^{*}(z)-D(z)^{-1} D(0)\right| \leqslant \tilde{C}_{q^{\prime}}\left(q q^{\prime}\right)^{n} \tag{2.6}
\end{equation*}
$$

(v) $D(z)^{-1}$ has an analytic continuation to $\left\{z\left||z|<q^{-1}\right\}\right.$, and in that region,

$$
\begin{equation*}
\Phi_{n}^{*}(z) \rightarrow D(0) D(z)^{-1} \tag{2.7}
\end{equation*}
$$

(vi) For $|z|>q$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z^{-n} \Phi_{n}(z)=D(0) \overline{D(1 / \bar{z})}^{-1} \tag{2.8}
\end{equation*}
$$

Proof. (i) For $|z|=1,\left|\Phi_{n}(z)\right|=\left|\Phi_{n}^{*}(z)\right|$, so (2.2) holds by induction from (1.1). (2.2) for $|z|<1$ follows from the maximum principle. (2.3) then follows from (1.2).
(ii) By (2.3) and the * of (1.1),

$$
\begin{align*}
\Phi_{n+1}^{*}(z) & =\Phi_{n}^{*}(z)-\alpha_{n} z \Phi_{n}(z) \tag{2.9}\\
\left|\Phi_{n+1}^{*}(z)\right| & \leqslant 1+C_{1} \sum_{j=0}^{n}\left|\alpha_{j}\right||z|^{n+1} \\
& \leqslant 1+C C_{1}|z| \sum_{j=0}^{\infty} q^{n}|z|^{n}
\end{align*}
$$

proving (2.4).
(iii) By (1.2) and (2.4), we have (2.5) for $q^{\prime} \leqslant|z| \leqslant 1$. The result for $|z|<q^{\prime}$ then follows from the maximum principle.
(iv) By (2.9) and (2.5),

$$
\begin{aligned}
\sum_{m=n}^{\infty}\left|\Phi_{m+1}^{*}(z)-\Phi_{m}^{*}(z)\right| & \leqslant \sum_{m=n}^{\infty} C_{q} C q^{m}|z|\left(q^{\prime}\right)^{m} \\
& \leqslant \tilde{C}_{q^{\prime}}\left(q q^{\prime}\right)^{n}
\end{aligned}
$$

Since $\Phi_{m}^{*}(z) \rightarrow D(0) D(z)^{-1}$, (2.6) holds.
(v) Following [4], we note that (2.9) implies that if $|z|<q^{-1}$, then $\sum_{n} \mid \Phi_{n+1}^{*}(z)-$ $\Phi_{n}^{*}(z) \mid<\infty$, so $\Phi_{n}^{*}(z)$ has a limit. Since Szegő's theorem holds if $|z|<1$, we conclude that $D(z)^{-1}$ has a continuation and (2.7) holds.
(vi) is immediate from (v) and (1.2).

By iterating (1.1), we obtain

$$
\begin{equation*}
\Phi_{n}(z)=z^{n}-\sum_{j=1}^{n} \bar{\alpha}_{n-j} z^{j-1} \Phi_{n-j}^{*}(z) \tag{2.10}
\end{equation*}
$$

We conclude that
Theorem 2.2. Suppose (1.5) holds. Then, uniformly in each disk $|z|<b-\varepsilon$, we have that

$$
\begin{align*}
& \varphi_{n}(z)-\left[\sum_{\ell=1}^{L} \bar{C}_{\ell} \bar{b}_{\ell}^{n}\left(z-\bar{b}_{\ell}\right)^{-1}\right] D(z)^{-1} \\
& \quad=O\left(n(b \Delta)^{n}\right)+O\left(n b^{2 n}\right)+O\left(n b^{n}\left(1-\frac{\varepsilon}{b}\right)^{n}\right) \tag{2.11}
\end{align*}
$$

In particular, uniformly on the disk,

$$
\lim _{n \rightarrow \infty}\left|b^{-n} \varphi_{n}-\tilde{Q}_{n}(z)\right|=0
$$

where

$$
\begin{equation*}
\tilde{Q}_{n}(z)=\left[\sum_{\ell=1}^{L} \bar{C}_{\ell} \omega_{\ell}^{n}\left(\bar{b}_{\ell}-z\right)^{-1}\right] D(z)^{-1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{\ell}=\frac{\bar{b}_{\ell}}{b} \tag{2.13}
\end{equation*}
$$

Remarks. 1. In (2.11), the $b^{2 n}$ is actually $b^{(3-\delta) n}$ for any $\delta>0$.
2. $D(z) \tilde{Q}_{n}(z) \prod_{\ell=1}^{L}\left(\bar{b}_{\ell}-z\right)$ is a polynomial of degree $L-1$ with almost periodic coefficients (periodic if $b_{\ell}^{p}=1$ for some p and all ℓ).

Proof. We begin by noting that

$$
\begin{align*}
\sum_{j=1}^{\infty} \bar{b}_{\ell}^{n-j} z^{j-1} & =\bar{b}_{\ell}^{n-1}\left(1-z \bar{b}_{\ell}^{-1}\right)^{-1} \\
& =\bar{b}_{\ell}^{n}\left(\bar{b}_{\ell}-z\right)^{-1} \tag{2.14}
\end{align*}
$$

and by an identical calculation,

$$
\begin{equation*}
\sum_{j=n+1}^{\infty} \bar{b}_{\ell}^{n-j} z^{j-1}=z^{n}\left(\bar{b}_{\ell}-z\right)^{-1} \tag{2.15}
\end{equation*}
$$

It follows by (2.10) that if $|z|<b-\varepsilon$, then

$$
\begin{align*}
& \left|\Phi_{n}(z)-D(z)^{-1} D(0) \sum_{\ell=1}^{L} \bar{C}_{\ell} \bar{b}_{\ell}^{n}\left(z-\bar{b}_{\ell}\right)^{-1}\right| \\
& \quad \leqslant C_{\varepsilon}|z|^{n}+\sum_{j=1}^{n}|z|^{j-1}\left|\bar{\alpha}_{n-j} \Phi_{n-j}^{*}(z)-\sum_{\ell=1}^{L} \bar{C}_{\ell} \bar{b}_{\ell}^{n-j} D(0) D(z)^{-1}\right| . \tag{2.16}
\end{align*}
$$

The $|z|^{n}$ term is $O\left(b^{n}\left(1-\frac{\varepsilon}{b}\right)^{n}\right)$. By (1.5) and (2.5), the term in $|\cdot|$ in (2.16) is bounded by

$$
\begin{equation*}
C\left[b^{2(n-j)}+(b \Delta)^{n-j}\right] \tag{2.17}
\end{equation*}
$$

where the first term comes from $\left|\left[\Phi_{n}^{*}-D(0) D(z)^{-1}\right] \alpha_{n}\right|$ and the second from $\mid D(z)^{-1} D(0)$ $\left(\alpha_{n}-\sum_{\ell=1}^{L} C_{\ell} b_{\ell}^{n}\right) \mid$. Since $|z|<b$, the sum in (2.16) is thus bounded by $n C^{\prime}\left[b^{2 n}+\right.$ $\left.\max (b \Delta, z)^{n}\right]$. It follows that

$$
D(0)^{-1} \Phi_{n}(z)-\left[\sum_{\ell=1}^{L} \bar{C}_{\ell} \bar{b}_{\ell}^{n}\left(z-\bar{b}_{\ell}\right)^{-1}\right] D(z)^{-1}=\text { RHS (right-hand side) of (2.11). }
$$

Eq. (2.11) then follows from

$$
\begin{aligned}
D(0)^{-1} \Phi_{n}(z) & =\varphi_{n}(z)+O\left(b^{n}\left|\prod_{j=1}^{n-1}\left(1-\left|\alpha_{j}\right|^{2}\right)^{1 / 2}-D(0)\right|\right) \\
& =\varphi_{n}(z)+O\left(b^{2 n}\right) .
\end{aligned}
$$

From (2.10), we also get a result that only depends on ratio asymptotics:
Theorem 2.3. Suppose that α_{n} is a sequence of Verblunsky coefficients and n_{j} a subsequence so that
(i)

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|\alpha_{n}\right|^{1 / n}=b \in(0,1) \tag{2.18}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\liminf _{j \rightarrow \infty}\left|\alpha_{n_{j}}\right|^{1 / n_{j}}=b \tag{2.19}
\end{equation*}
$$

(iii) For all $k=0,1,2, \ldots$ and suitable $\beta_{k} \in \mathbb{C}$,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\bar{\alpha}_{n_{j}-k-1}}{\bar{\alpha}_{n_{j}-1}}=\beta_{k} \tag{2.20}
\end{equation*}
$$

exists.
(iv) For every ε, there is C_{ε} so that for all j and $k=1,2, \ldots$, we have

$$
\begin{equation*}
\left|\alpha_{n_{j}-k-1}\right|(b-\varepsilon)^{k} \leqslant C_{\varepsilon}\left|\alpha_{n_{j}-1}\right| . \tag{2.21}
\end{equation*}
$$

Thenfor $|z|<b, \sum_{j=0}^{\infty} \beta_{j} z^{j}$ converges absolutely and uniformly on each disk $|z|<b-\varepsilon$ and

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\Phi_{n_{j}}(z)}{\bar{\alpha}_{n_{j}-1}}=-D(z)^{-1} \sum_{k=0}^{\infty} \beta_{k} z^{k} \tag{2.22}
\end{equation*}
$$

Proof. By (2.21), we have

$$
\begin{equation*}
\left|\beta_{k}\right| \leqslant C_{\varepsilon}(b-\varepsilon)^{-k} \tag{2.23}
\end{equation*}
$$

proving that $\sum_{j=0}^{\infty} \beta_{j} z^{j}$ has radius of convergence at least b.
In (2.10) divided by $\alpha_{n_{j}-1}$, the summand is bounded by

$$
|z|^{j-1}(b-\varepsilon)^{-j} \sup _{m,|z| \leqslant b}\left|\Phi_{m}^{*}(z)\right|
$$

which is summable for $|z|<b-\varepsilon$, so by the dominated convergence theorem, (2.22) holds.

Corollary 2.4. Let α_{n} be a sequence of Verblunsky coefficients so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\alpha_{n-1}}=b \in(0,1) \tag{2.24}
\end{equation*}
$$

Then uniformly for $|z|<b-\varepsilon$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\Phi_{n}(z)}{\bar{\alpha}_{n-1}}=-D(z)^{-1}\left(1-\frac{z}{b}\right)^{-1} \tag{2.25}
\end{equation*}
$$

Remarks. 1. By rotational covariance, if (2.24) holds for some $b \in \mathbb{D}$, we can find a rotated problem with the ratio in $(0,1)$, so this implies a result whenever ratio asymptotics holds.
2. This is related to results of BLS [1]; see the discussion in Section 6.

Proof. Clearly, (2.20) holds with $\beta_{k}=b^{-k}$ so we need only prove (2.21). For any δ, we have

$$
\left|\frac{\alpha_{m-1} b}{\alpha_{m}}\right| \leqslant C_{m}^{(\delta)}(1+\delta),
$$

where $C_{m}^{(\delta)}=1$ for $m \geqslant M_{\delta}$ for some M_{δ}. It follows that

$$
\left|\frac{\alpha_{m-k} b^{k}}{\alpha_{m}}\right| \leqslant\left[\prod_{m=1}^{M_{\delta}} C_{m}^{(\delta)}\right](1+\delta)^{k}
$$

which implies (2.21).
Similarly, we obtain
Corollary 2.5. Let α_{n} be a sequence of Verblunsky coefficients, $b \in(0,1)$, and c_{1}, c_{2}, \ldots, c_{p} a sequence so that

$$
\begin{equation*}
\prod_{j=1}^{p} c_{j}=1 \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\alpha_{m p+\ell}}{\alpha_{m p+\ell-1}}=b c_{\ell} \quad \ell=1,2, \ldots, p \tag{2.27}
\end{equation*}
$$

Then uniformly for $|z|<b-\varepsilon$,

$$
\lim _{m \rightarrow \infty} \frac{\Phi_{m p+\ell}(z)}{\bar{\alpha}_{m p+\ell-1}}=-D(z)^{-1} G_{\ell}(z)
$$

where

$$
\begin{align*}
G_{\ell}(z)\left(1-\frac{z^{\ell}}{b^{\ell}}\right)= & 1+\left(b c_{\ell-1}\right)^{-1} z+\left(b c_{\ell-1}\right)^{-1}\left(b c_{\ell-2}\right)^{-1} z^{2} \\
& +\cdots+\prod_{j=1}^{p-1}\left(b c_{\ell-j}\right)^{-1} z^{p-1} \tag{2.28}
\end{align*}
$$

One can also say something when $b=1$ if we also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}=0 \tag{2.29}
\end{equation*}
$$

A key issue is that it may not be true that $\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2}<\infty$, so $D(z)$ may not exist.
Theorem 2.6. Let α_{n} be a sequence of Verblunsky coefficients and $c_{1}, c_{2}, \ldots, c_{p}$ is a sequence so that (2.26) holds and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\alpha_{m p+\ell}}{\alpha_{m p+\ell-1}}=c_{\ell} \quad \ell=1,2, \ldots, p \tag{2.30}
\end{equation*}
$$

Then, uniformly in $|z|<1-\varepsilon$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\varphi_{m p+\ell}(z)}{\bar{\alpha}_{m p+\ell-1} \varphi_{m p+\ell}^{*}(z)}=-G_{\ell}(z) \tag{2.31}
\end{equation*}
$$

where G is given by (2.28) with $b=1$.
Proof. Eqs. (2.29) and (2.9), together with $\left|\Phi_{n}(z)\right| \leqslant\left|\Phi_{n}^{*}(z)\right|$ on $\overline{\mathbb{D}}$, implies that on $\overline{\mathbb{D}}$,

$$
\lim _{n \rightarrow \infty} \frac{\Phi_{n}^{*}(z)}{\Phi_{n+1}^{*}(z)}=1
$$

Dividing (2.10) by $\bar{\alpha}_{m p+\ell-1} \Phi_{m p+\ell}^{*}$, we obtain the result by the same argument that led to Corollary 2.5.

3. Asymptotics in the critical region

In this section, we will determine asymptotics of $\Phi_{n}(z)$ in an annulus about $|z|=b$ when (1.5) holds. The idea will be to view (1.1) as an inhomogeneous equation, so we first look
at some solutions with particular inhomogeneities. Define for $z \neq \bar{b}_{\ell}$ and $n=0,1,2, \ldots$,

$$
\begin{equation*}
u_{n}^{(\ell)}=\bar{b}_{\ell}^{n}\left(z-\bar{b}_{\ell}\right)^{-1} . \tag{3.1}
\end{equation*}
$$

Proposition 3.1. $u_{n}^{(\ell)}$ obeys

$$
\begin{equation*}
u_{n+1}^{(\ell)}=z u_{n}^{(\ell)}-\bar{b}_{\ell}^{n} \tag{3.2}
\end{equation*}
$$

for all $z \in \mathbb{C}, z \neq \bar{b}_{\ell}$, and all $n=0,1,2, \ldots$.
Proof. $u_{n+1}^{(\ell)}-z u_{n}^{(\ell)}=\left(\bar{b}_{\ell}^{n}-z\right) u_{n}^{(\ell)}=-\bar{b}_{\ell}^{n}$.
Next, define

$$
\begin{equation*}
R_{n}(z)=\bar{\alpha}_{n} \Phi_{n}^{*}(z)-\sum_{\ell=1}^{L} \bar{C}_{\ell} b_{\ell}^{n} D(z)^{-1} D(0) \tag{3.3}
\end{equation*}
$$

and also define

$$
\begin{equation*}
s_{n}(z)=\sum_{j=0}^{\infty} z^{-j-1} R_{n+j}(z) \tag{3.4}
\end{equation*}
$$

We have
Proposition 3.2. Let α_{n} obey (1.5). Then there is $\Delta_{1}<1$,
(i)

$$
\begin{equation*}
\sup _{|z| \leqslant 1}\left|R_{n}(z)\right| \leqslant C\left(b \Delta_{1}\right)^{n} . \tag{3.5}
\end{equation*}
$$

(ii) The sum in (3.4) converges uniformly in

$$
\begin{equation*}
\mathbb{A}=\left\{z\left|1>|z|>b \Delta_{1}\right\}\right. \tag{3.6}
\end{equation*}
$$

and $s_{n}(z)$ is analytic there.
(iii) We have in \mathbb{A} that

$$
\begin{equation*}
\left|s_{n}(z)\right| \leqslant C\left(b \Delta_{1}\right)^{n}\left(|z|-b \Delta_{1}\right)^{-1} \tag{3.7}
\end{equation*}
$$

(iv) s_{n} obeys

$$
\begin{equation*}
s_{n+1}(z)=z s_{n}(z)-R_{n}(z) \tag{3.8}
\end{equation*}
$$

Proof. (i) follows from (1.5) and (2.6).
(ii), (iii) Since

$$
\left|z^{j-1} R_{n+j}(z)\right| \leqslant|z|^{-1}\left(b \Delta_{1}\right)^{n}\left(|z|^{-1} b \Delta_{1}\right)^{j}
$$

we have a geometric series which yields (ii) and (iii).
(iv) Since the sum converges absolutely,

$$
\begin{aligned}
s_{n+1}(z)-z s_{n}(z) & =\sum_{j=1}^{\infty} z^{-j} R_{n+j}(z)-\sum_{j=0}^{\infty} z^{-j} R_{n+j} \\
& =-R_{n}(z) .
\end{aligned}
$$

The main result of this section is
Theorem 3.3. Let α_{n} obey (1.5). Then for some $\Delta_{1}<1$ and $z \in \mathbb{A}$ given by (3.7), we have that

$$
\begin{equation*}
\Phi_{n}(z)=s_{n}(z)+\left[\sum_{\ell=1}^{L} \bar{C}_{\ell} \bar{b}_{\ell}^{n}\left(z-\bar{b}_{\ell}\right)^{-1}\right] D(0) D(z)^{-1}+z^{n} D(0) \overline{D(1 / \bar{z})}^{-1} \tag{3.9}
\end{equation*}
$$

Remarks. 1. Since $\varphi_{n}=\kappa_{n} \Phi_{n}(z)$ and $\kappa_{n}=D(0)^{-1}\left(1+O\left(b^{n}\right)\right)$, this also gives us asymptotics for φ_{n}.
2. Since Φ_{n} is analytic in \mathbb{A}, the poles at \bar{b}_{ℓ} in the second and third terms of (3.9) must cancel.
3. In \mathbb{A}, (3.7) implies s_{n} is small compared to both z^{n} and b^{n}, so the asymptotics of Φ_{n} comes from the competition between the second and third terms in (3.9).

Proof. Let

$$
Q_{n}(z)=\Phi_{n}(z)-s_{n}(z)-\left[\sum_{\ell=1}^{L} \bar{C}_{\ell} \bar{b}_{\ell}^{n}\left(z-\bar{b}_{\ell}\right)^{-1}\right] D(0) D(z)^{-1}
$$

By (1.1), (2.2), and (3.8), we have

$$
Q_{n+1}(z)=z Q_{n}(z)
$$

so

$$
Q_{n}(z)=f(z) z^{n}
$$

Since Q_{n} is analytic in $\mathbb{A} \backslash\left\{\bar{b}_{\ell}\right\}_{\ell=0}^{L}, f(z)$ is analytic there.
By (3.7),

$$
\lim _{n \rightarrow \infty}|z|^{-n}\left|s_{n}(z)\right|=0
$$

in \mathbb{A}, and if $|z|>b,|z|^{-n} \sum_{\ell=1}^{L} \bar{C}_{\ell} \bar{b}_{\ell}^{n}\left(z-\bar{b}_{\ell}\right)^{-1} \rightarrow 0$, so for $|z|>b$,

$$
\begin{aligned}
f(z) & =\lim _{n \rightarrow \infty} z^{-n} Q_{n}(z)=\lim _{n \rightarrow \infty} z^{-n} \Phi_{n}(z) \\
& =D(0) \overline{D(1 / \bar{z})}^{-1}
\end{aligned}
$$

by (2.8).

4. Zeros in $|z|<b-\varepsilon$

In this section, we use the asymptotic result from Section 2 to analyze zeros of φ_{n} in the region where $|z|<b$. We initially focus on the case where (1.5) holds. A key role is played by the polynomials

$$
\begin{equation*}
P_{n}(z)=\sum_{\ell=1}^{L} \bar{C}_{\ell} \omega_{\ell}^{n} \prod_{k \neq \ell}\left(z-\bar{b}_{k}\right) \tag{4.1}
\end{equation*}
$$

of degree at most $L-1$. Here $\omega_{\ell}=\bar{b}_{\ell} / b$.
The P_{n} are almost periodic in n and, in particular, for any sequence n_{j}, there is a subsequence $n_{j(k)}$ so $P_{\infty} \equiv \lim P_{n_{j(k)}}$ exists and is a nonzero polynomial (since $P_{\infty} / \prod_{\ell}\left(\bar{b}_{\ell}-z\right)$ has poles at each $\left.\bar{b}_{\ell}\right)$.

Theorem 4.1. Let (1.5) hold. Then for any $\varepsilon>0$, there is an N so that for $n \geqslant N, \varphi_{n}(z)$ has at most $L-1$ zeros in $\{z||z|<b-\varepsilon\} \equiv \mathbb{S}$.

Proof. If not, we can find a sequence $n(j) \rightarrow \infty$ so that $P_{n(j)}(z)$ has at least L zeros in $\overline{\mathbb{S}}$. By passing to a further subsequence, we can suppose $P_{n(j)} \rightarrow P_{\infty}$ and that the L zeros have limits z_{1}, \ldots, z_{L} in $\overline{\mathbb{S}}$ (maybe not distinct). By Theorem 2.2,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \varphi_{n(j)} D(z) \prod_{\ell=1}^{L}\left(z-\bar{b}_{\ell}\right)=P_{\infty}(z) \tag{4.2}
\end{equation*}
$$

in a neighborhood of $\overline{\mathbb{S}}$, so by Hurwitz's theorem, P_{∞} has L zeros (counting multiplicity). Since P_{∞} has degree $L-1$ and is not identically zero, we have a contradiction.

Using Hurwitz's theorem and (4.2), we also have an existence result for zeros:
Theorem 4.2. Let (1.5) hold and let $\omega_{\ell}=\bar{b}_{\ell} / b$. Suppose $n(j)$ is a subsequence so that $\lim \omega_{\ell}^{n(j)}$ exists, call it $\omega_{\ell}^{(\infty)}$. Let

$$
\begin{equation*}
P_{\infty}(z)=\sum_{\ell=1}^{L} \bar{C}_{\ell} \omega_{\ell}^{(\infty)} \prod_{k \neq \ell}\left(z-\bar{b}_{k}\right) \tag{4.3}
\end{equation*}
$$

and let $\left\{w_{j}\right\}_{j=1}^{J}$ be its zeros in $\left\{z||z|<b\}\right.$. Then for all sufficiently small δ and $j \geqslant N_{\delta}$, $\varphi_{n(j)}(z)$ has one zero within δ of each w_{j} and no other zero in $\{z||z|<b-\delta\}$.

Remark. By "one zero within δ of w_{j}," we actually mean exactly k zeros if some w_{j} occurs k times in the list of zeros counting multiplicity.

Since the right side of (2.25) is nonvanishing on $\{z||z|<b\}$, we recover a result of BLS [1] from Corollary 2.4, Theorem 2.6, and Hurwitz's theorem:

Theorem 4.3. Let α_{n} be a sequence of Verblunsky coefficients so that

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\alpha_{n-1}}=b \in(0,1] .
$$

Then for any $\varepsilon>0$, there is an N_{ε} so $\varphi_{n}(z)$ has no zeros in $\left\{z||z|<b-\varepsilon\}\right.$ if $n \geqslant N_{\varepsilon}$.
Finally, Corollary 2.5 and Hurwitz's theorem imply
Theorem 4.4. Let α_{n} be a sequence of Verblunsky coefficients, $b \in(0,1)$, and $c_{1}, c_{2}, \ldots, c_{p}$ a sequence so that (2.26) and (2.27) hold. Let G_{ℓ} be given by (2.28), let $W_{\ell}=G_{\ell}(1-$ $\left.z^{\ell} / b^{\ell}\right)=$ RHS of (2.28), and let $\left\{w_{j}^{(\ell)}\right\}_{j=1}^{N_{\ell}}$ be the zeros of W_{ℓ} in $\{z||z|<b\}$. Then for any sufficiently small δ, there is an N so for $m p+\ell \geqslant N$, we have that the only zeros of $\varphi_{m p+\ell}$ in $\left\{z||z|<b-\delta\}\right.$ are one each within δ of each $w_{j}^{(\ell)}$.

Remark. As we will explain in Section 6, that the only possible limit points of zeros are the $w_{j}^{(\ell)}$ is a result of BLS [1], but they do not prove there actually are zeros there.

Example 4.5. Let α_{n} be given by (1.7). We have $b=\frac{1}{2}, p=4$, and $c_{1}=-1, c_{2}=-1$, $c_{3}=3, c_{4}=\frac{1}{3}$. Thus

$$
W_{2}(z)=1-2 z-12 z^{2}-8 z^{3}
$$

which has zeros at $-\frac{1}{2}$ and at $\frac{1}{2}(-1 \pm \sqrt{2})$. Only $(\sqrt{2}-1) / 2$ is in $\left\{z\left||z|<\frac{1}{2}\right\}\right.$. The comparison of the limit and the zeros of Φ_{22} appears in Section 1 just after Fig. 2. It is not coincidental that W_{2} has a zero at $z=-\frac{1}{2}$. In this case, the second term in (3.9) is, for $n \equiv 2(\bmod 4), C\left(\frac{1}{2}\right)^{n} W_{2}(z) /\left(z^{4}-\frac{1}{16}\right)$ with poles only at $\frac{1}{2}, \pm \frac{1}{2} i$. The potential pole at $z=-\frac{1}{2}$ has to be cancelled by a zero in W_{2}.

As in [7], one can analyze how close the zeros of φ_{n} are to the points $w_{j}^{(\ell)}$. In general, they are exponentially close. If the $w_{j}^{(\ell)}$ are in the annulus where (3.9) holds, one can write down the leading asymptotic exactly. For example, if $w_{j}^{(\ell)}$ is a k-fold zero and $D\left(1 / \bar{w}_{j}(z)\right) \neq 0$, then the zeros have a clock structure as in Theorem 4.5 of [7].

By using Theorem 2.6, we see that Theorem 4.4 extends to the case $b=1$ if $\lim \alpha_{n}=0$. In particular, if $\lim \alpha_{n}=0$ and $\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}=1$ (e.g., $\alpha_{n}=(n+2)^{-\beta}$), then there are no zeros of φ_{n} in $\{z||z|<1-\delta\}$ for n large.

5. Zeros in the critical region

Given Theorem 3.3 and the estimate (3.7), the analysis of zeros of φ_{n} in the region $\left\{z\left|b \Delta_{1}<|z|<b \Delta_{1}^{-1}\right\}\right.$ is identical to the analysis in [7] of the zeros in case $L=1$. The gap in that case if $z=b$ comes from the analysis of $\overline{D(1 / \bar{z})} \varphi_{n}(z)$ which has zeros with no gap. The gap in zeros of $\varphi_{n}(z)$ comes from the fact that $\overline{D(1 / \bar{z})}$ has zeros at $z=b$. In our case, when (1.5) holds, $\overline{D(1 / \bar{z})}$ has a zero at each \bar{b}_{ℓ}, so there are gaps at all those points.

The following extends Theorem 4.3 of [7] and has the same proof:
Theorem 5.1. Let α_{n} be a sequence of Verblunsky coefficients obeying (1.5). Then for some δ, all the zeros $\left\{z_{j}^{(n)}\right\}_{j=1}^{N_{n}}$ of $\varphi_{n}(z)$ with $||z|-b|<\delta$ obey
(1)

$$
\begin{equation*}
\sup _{j}| | z_{j}^{(n)}|-b|=O\left(\frac{\log n}{n}\right) \tag{5.1}
\end{equation*}
$$

(2) For n large, the $z_{j}^{(n)}$ can be ordered in increasing arguments and

$$
\begin{equation*}
\frac{\left|z_{j+1}^{(n)}\right|}{\left|z_{j}^{(n)}\right|}=1+O\left(\frac{1}{n \log n}\right) \tag{5.2}
\end{equation*}
$$

(3) Let $\left\{\tilde{z}_{j}^{(n)}\right\}_{j=1}^{N_{n}+L}$ be the sequence of $z_{j}^{(n)}$,s with L points added at $\left\{\bar{b}_{\ell}\right\}_{\ell=1}^{L}$ still listed in increasing order.

Then

$$
\begin{equation*}
\arg z_{j+1}^{(n)}-\arg z_{j}^{(n)}=\frac{2 \pi}{n}+O\left(\frac{1}{n \log n}\right) \tag{5.3}
\end{equation*}
$$

for $j=1,2, \ldots, N_{n}+L$ with $\arg z_{N_{n}+L+1}^{(n)} \equiv 2 \pi+\arg z_{1}^{(n)}$. Moreover, if $D(z)^{-1}$ is nonvanishing on $\left\{z\left||z|=b^{-1}\right\}\right.$, then $O(1 / n \log n)$ in (5.2) and (5.3) can be replaced by $O\left(1 / n^{2}\right)$, and $O(\log n / n)$ in (5.1) can be replaced by $O(1 / n)$.

Remark. In particular, the zeros nearest \bar{b}_{ℓ} are $\bar{b}_{\ell} e^{ \pm 2 \pi i / n}+O\left(1 / n^{2}\right)$ with the difference in the args equal to $4 \pi / n+O\left(1 / n^{2}\right)$.

6. Connection to the results of Barrios-López-Saff

In this final section, we want to relate the results of [1] to ours. In their work, determinants of the following form enter:

$$
\Delta_{m}(z)=\left|\begin{array}{ccccc}
z+x_{1} & z x_{2} & 0 & & \tag{6.1}\\
1 & z+x_{2} & z x_{3} & \ddots & \\
0 & 1 & z+x_{3} & \ddots & \ddots \\
& & \ddots & \ddots & z x_{m} \\
& & & 1 & z+x_{m}
\end{array}\right|
$$

where we also define $\Delta_{0}(z) \equiv 1$. We need the following:
Proposition 6.1. (i) For $m=2,3, \ldots$

$$
\begin{equation*}
\Delta_{m}(z)=\left(z+x_{m}\right) \Delta_{m-1}-z x_{m} \Delta_{m-2}(z) \tag{6.2}
\end{equation*}
$$

(ii) For $m=1,2, \ldots$

$$
\begin{equation*}
\Delta_{m}(z)=z \Delta_{m-1}+x_{1} x_{2} \ldots x_{m} \tag{6.3}
\end{equation*}
$$

(iii) For $m=1,2, \ldots$

$$
\begin{equation*}
\Delta_{m}(z)=z^{m}+x_{1} z^{m-1}+x_{1} x_{2} z^{m-2}+\cdots+x_{1} \ldots x_{m} . \tag{6.4}
\end{equation*}
$$

Proof. (i) Eq. (6.2) comes from expanding Δ_{m} in minors along the last row.
(ii) Eq. (6.2) reads

$$
\Delta_{m}(z)=z \Delta_{m-1}(z)+x_{m}\left[\Delta_{m-1}(z)-z \Delta_{m-2}\right],
$$

which implies (6.3) inductively once one notes that (6.3) holds for $m=1$ since $\Delta_{1}(z)=$ $z+x_{1}$.
(iii) This follows by induction from (6.3).

In [1], they consider sequences of Verblunsky coefficients where (2.26) and (2.27) hold to prove that the only accumulation points of zeros of $\varphi_{m p+\ell}$ are given by zeros of a polynomial that has the form of (6.1). Using (6.4) and

$$
\left(x_{1} \ldots x_{m}\right)^{-1} \Delta_{m}(z)=1+x_{m}^{-1} z+x_{m}^{-1} x_{m-1}^{-1} z^{2}+\cdots+\left(x_{1} \ldots x_{m}\right)^{-1} z^{m}
$$

one sees their polynomials are up to a constant, our polynomial W_{ℓ}. Thus our results extend theirs (in that we prove there are, in fact, always limit points).

Acknowledgments

I thank Percy Deift and Chuck Newman for the hospitality of the Courant Institute where some of this work was done.

References

[1] D. Barrios Rolanía, G. López Lagomasino, E.B. Saff, Asymptotics of orthogonal polynomials inside the unit circle and Szegő-Padé approximants, J. Comput. Appl. Math. 133 (2001) 171-181.
[2] Ya.L. Geronimus, Orthogonal Polynomials: Estimates, Asymptotic Formulas, and Series of Polynomials Orthogonal on the Unit Circle and on an Interval, Consultants Bureau, New York, 1961.
[3] H.N. Mhaskar, E.B. Saff, On the distribution of zeros of polynomials orthogonal on the unit circle, J. Approx. Theory 63 (1990) 30-38.
[4] P. Nevai, V. Totik, Orthogonal polynomials and their zeros, Acta Sci. Math. (Szeged) 53 (1989) 99-104.
[5] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series, American Mathematical Society, Providence, RI, 2005, in press.
[6] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Series, American Mathematical Society, Providence, RI, 2005, in press.
[7] B. Simon, Fine structure of the zeros of orthogonal polynomials, I. A tale of two pictures, Proc. Constructive Functions Tech-04, to appear.
[8] B. Simon, Fine structure of the zeros of orthogonal polynomials, III. Periodic recursion coefficients, Comm. Pure Appl. Math., to appear.
[9] G. Szegő, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, vol. 23, American Mathematical Society, Providence, RI, 1939 (third ed., 1967).

[^0]: E-mail address: bsimon@caltech.edu.
 ${ }^{1}$ Supported in part by NSF grant DMS-0140592.

